Continued population growth requires an increase in agricultural production, which is threatened by many challenges such as climate change, labor shortages and productivity performance costs. In recent years, the use of Smart Farming Technologies (SFTs) is increasing rapidly and appears to be a reliable solution to the above challenges. SFTs include Farm Management Information Systems (FMIS), Precision Agriculture (PA) Systems, agricultural automation and robotic applications that (a) increase yield, (b) improve product quality, (c) make rational and efficient use of inputs, (d) reduce energy consumption and (e) protect soil and water resources. While SFTs for FMIS, PA methods, and automation operations have been developed commercially, only a few cases of robotic systems are at the commercial level. However, robotics is making great strides as autonomous Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) are increasingly incorporating technological equipment to monitor crops and implement agricultural practices. Their use can increase productivity, profitability, work safety and environmental sustainability. But even commercially available UAVs and UGVs for agricultural use work as stand-alone solutions rather than as a combined system where UAVs and UGVs help each other.